Oxidation of tamoxifen by human flavin-containing monooxygenase (FMO) 1 and FMO3 to tamoxifen-N-oxide and its novel reduction back to tamoxifen by human cytochromes P450 and hemoglobin.
نویسندگان
چکیده
Tamoxifen (TAM), used as the endocrine therapy of choice for breast cancer, undergoes metabolism primarily forming N-desmethyltamoxifen, 4-hydroxytamoxifen, alpha-hydroxytamoxifen, and tamoxifen-N-oxide (TNO). Our earlier studies demonstrated that flavin-containing monooxygenases (FMOs) catalyze the formation of TNO. The current study demonstrates that human FMO1 and FMO3 catalyze TAM N-oxidation to TNO and that cytochromes P450 (P450s), but not FMOs, reduce TNO to TAM. CYP1A1, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 all reduced TNO, with CYP2A6, CYP1A1, and CYP3A4 producing the greatest reduction. A portion of TAM formed by CYP3A4-mediated reduction of TNO was further metabolized, but not TAM formed by the other P450s. TNO reduction by P450s is extremely rapid with considerable TAM formation detected at the earliest time point that products could be measured. TAM formation exhibited a lack of linearity with incubation time but increased linearly as a function of TNO and P450 concentration. TNO was converted into TAM by reduced hemoglobin (Hb) and NADPH-P450 oxidoreductase, suggesting involvement of the same heme-Fe(2+) complex in both Hb and P450s. The findings raise the question of whether the reductive activity may be nonenzymatic. Results of this in vitro study demonstrate the potential of TAM and TNO to be interconverted metabolically. FMO seems to be the major enzymatic oxidant, whereas several P450 enzymes and even reduced hemoglobin are capable of reducing TNO back to TAM. The possibility that these processes may comprise a metabolic cycle in vivo is discussed in this article.
منابع مشابه
Concurrent flavin-containing monooxygenase down regulation and cytochrome P450 induction by dietary indoles in the rat: implication for drug-drug interactions.
Our laboratory has previously shown that dietary administration of indole-3-carbinol (I3C) to male Fischer 344 rats has the very unusual property of inducing hepatic levels of a number of cytochrome P450s (CYPs), especially CYP1A1, while markedly inhibiting the levels of flavin-containing monooxygenase (FMO) 1 protein and its catalytic activity. We hypothesized that rats fed I3C or 3,3'-diindol...
متن کاملConcurrent Flavin-containing Monooxygenase Down-regulation and Cytochrome P-450 Induction by Dietary Indoles in Rat: Implications for Drug-drug Interaction
Our laboratory has previously shown that dietary administration of indole-3-carbinol (I3C) to male Fischer 344 rats has the very unusual property of inducing hepatic levels of a number of cytochrome P450s (CYPs), especially CYP1A1, while markedly inhibiting the levels of flavin-containing monooxygenase (FMO) 1 protein and its catalytic activity. We hypothesized that rats fed I3C or 3,3*-diindol...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملInterindividual differences of human flavin-containing monooxygenase 3: genetic polymorphisms and functional variation.
The human flavin-containing monooxygenase (form 3) (FMO3) participates in the oxygenation of nucleophilic heteroatom-containing drugs, xenobiotics, and endogenous materials. Currently, six forms of the FMO gene are known, but it is FMO3 that is the major form in adult human liver that is likely responsible for the majority of FMO-mediated metabolism. The substrate structural feature requirement...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 33 10 شماره
صفحات -
تاریخ انتشار 2005